Math 275D Lecture 11 Notes

Daniel Raban

October 23, 2019

1 Distribution of The Last Zero in [0, 1] and Martingale Properties of Brownian Motion

1.1 First time to exceed a value

Proposition 1.1. Let $T_a = \inf\{t > 0 : B_t \ge a\}$. Then

$$\mathbb{P}(T_a < 1) = 2\mathbb{P}(B_1 > a).$$

Proof. Last time, we said

$$\mathbb{P}(B_1 > a) = \mathbb{P}(B_1 > a \mid T_a < 1) \cdot \mathbb{P}(T_a < 1).$$

So we want to show that $\mathbb{P}(B_1 > a \mid T_a < 1) = \frac{1}{2}$. We have

$$\mathbb{E}[\mathbb{1}_{\{B_1 > B_{T_a}\}} \mid \mathcal{F}_a] = \mathbb{E}[\mathbb{1}_{\{B_{1-T_a} > B_0\}} \circ \theta_{T_a} \mid \mathcal{F}_a]$$
$$= \mathbb{E}_{B_{T_a}}[\mathbb{1}_{\{B_{1-T_a} > B_0\}}]$$
$$= \mathbb{E}_a[\mathbb{1}_{\{B_{1-T_a} > a\}}].$$

This is 1/2 if $T_a < 1$.

Corollary 1.1. Let Φ denote the CDF of the standard Gaussian distribution. Then

$$\mathbb{P}(T_a < 1) = 2(1 - \Phi(a)).$$

1.2 Distribution of the last zero in [0,1]

We've shown that $\inf\{t > 0 : B_t = 0\} = 0$ a.s. What is the distribution of the last zero in [0,1]? Let $A = \sup\{0 \le t \le 1 : B_t = 0\}$. Then

$$\mathbb{P}(A \le t) = \int p_t(0, y) \cdot \mathbb{P}(\text{no zeros between } t \text{ and } 1 \mid B(t) = y) \, dy.$$

By shifting the Brownian motion by t, the probability in the integrand is

$$\mathbb{P}_0(T_{-y} > 1 - t) = 2(1 - \Phi(y))$$

After solving the integral, we get

$$\mathbb{P}(A \le t) = \frac{2}{\pi} \arcsin(t).$$

Another related question: Let $a = \sup_{t \in [0,1]} B(t)$, and let $B(T_s) = a$. What is the distribution of T_s ?

1.3 Martingale properties of Brownian motion

Definition 1.1. A random function $(X_t)_{t\geq 0}$ is a **martingale** (with respect to the filtration \mathcal{F}_t) if for all t > s, $\mathbb{E}[X_t | \mathcal{F}_s] = X_s$.

Equivalently, the condition is $\mathbb{E}[X_t - X_s \mid \mathcal{F}_s] = 0.$

Proposition 1.2. $X_t = B_t^2 - t$ is a martingale.

Proof. First, $X_t - X_s = B_t^2 - B_s^2 - (t - s)$. Then $B_t = B_s + Y$, where $Y \perp B_s$ and $Y \sim N(0, t - s)$. So

$$\mathbb{E}[X_t - X_s \mid \mathcal{F}_s] = \mathbb{E}[Y^2 + 2Y - (t - s) \mid \mathcal{F}_s] = \mathbb{E}[Y^2] + 2\mathbb{E}[Y] - (t - s) = 0.$$

Proposition 1.3. Let $T = \inf\{t > 0 : B(t) \in \{a, b\}\}$. Then $\mathbb{E}[T] = -ab$.

Proof. Since $X_t = B_t^2 - t$ is a martingale,

$$\mathbb{E}[B_T^2] - \mathbb{E}[T] = \mathbb{E}[X_T] = \mathbb{E}[X_0] = 0.$$

To find $\mathbb{E}[B_T^2]$, we have $\mathbb{E}[B_T^2] = \mathbb{P}(B_T = a)a^2 + \mathbb{P}(B_T = b)b^2$. Since B_t is a martingle, $\mathbb{E}[B_T] = 0$. So we can calculate

$$\mathbb{P}(B_T = a) = -\frac{b}{a}(1 - \mathbb{P}(B_T = a)) \implies \mathbb{P}(B_T = a) = \frac{b}{b-a}.$$

So we get

$$\mathbb{E}[T] = -\frac{a^2b}{b-a} + \frac{b^2a}{b-a} = -ab.$$

What if we want to find $\mathbb{E}[T^2]$? We can use another martingale with a B_t^4 term. Next time, we will talk about how to figure out such martingales involving Brownian motion.